“Seeing Below The Surface: Ladar Trials Promise Enhanced Vessel Safety” –Maritime Executive

Ladar allows Color Line’s officers to perform safe deviation from the set course, maximizing fuel efficiency without increased risk of grounding.

Maritime Executive reports that,

Norwegian operator Color Line has been trialing Ladar, a light-based laser technology anti-collision system designed to identify floating objects on or under the surface of the water, including drifting fishing nets, logs, containers and ice, as well as plastic and other flotsam.

Wonder if this might be useful in finding people in the water, especially in rough weather and at night?

“The system we tested was better at detecting smaller items than we had anticipated, but not as good on metal objects in still water.”

The reason for this: waves caused by wind increase disturbance in the water around an object, making it easier to detect. “This includes up to storm level winds,” Dokken confirms. “The more activity in the water, the better.”

Frequently we need to go close to shore to execute a rescue. This could conceivably allow us to get closer without running aground, than we would using charts alone.

Might also be useful for the Waterways Commerce Cutters that operate in rivers with shifting bottom contours.

Really the Navy and Marines should be interested in this too.

Sounds like a good project for the R&D Center.

“British Army drone to fly over English Channel to monitor migrant boats” –Independent

Thales Watchkeeper WK450

Like the US Coast Guard, the UK Border Force conducts Alien Migrant Interdiction Operations. They are reportedly getting some assistance from the British Army in the form of Unmanned Air Vehicles (UAV) being used to patrol the English Channel.

The UAVs are Thales Watchkeeper WK 450s (manufacturer’s brochure here) an improved version of the Israeli Elbit Hermes 450 with the addition of a dual-mode synthetic aperture radar and ground moving target indication system, providing all weather target acquisition.

The Watchkeeper program has not been cheap, about 1.2 billion pounds to provide and support 54 drones, and it has had its problems. They were supposed to have been operational in 2010, but apparently only reached Initial Operational Capability in 2014. Five have crashed. Regarding the current fleet,

“45 Watchkeeper airframes were in service as at 23 July 2020. 13 have flown in the past 12 months and 23 have been in storage for longer than 12 months. Of those flying, 10 have been operated by the Army from Akrotiri in Cyprus and Boscombe Down in Wiltshire, three have been used for test and evaluation. The airframes in storage are held at specific, graduated, levels of readiness. This is commensurate with practices used on other Defence capabilities and assets.”

The airframes are:

  • Length: 19.69 ft (6 m)
  • Span: 34.45 ft (10.5 m)
  • Engine: Winkel rotary, 52 hp
  • Max Speed: 95 knots
  • Operational Radius: 200 km; 108 nm (Line of Sight)
  • Endurance: 16+ hours
  • Service ceiling 18,045 feet (5,500 m)

This means, it is about half the size of the familiar MQ-1 Predator, also a bit slower and their service ceiling is lower.

The British Maritime and Coastguard Agency (MCA) has selected Israel’s Elbit to demonstrate the capabilities of their larger Eblit Hermes 900 UAVs. which has capabilities similar to those of the MQ-1. Meanwhile the RAF is also flying surveillance over the English Channel. 

Containerized Sonar

Naval News reports that the French Navy is testing a containerized Thales CAPTAS-1 active/passive variable depth sonar (VDS).

This not the only such sonar available. The Canadians offer a similar system.

Should it be necessary, such systems could conceivably allow sonar systems to be added to all Coast Guard cutters the size of the Webber class Fast Response Cutters and larger.

The Navy’s New Frigate

Italian FREMM Bergamini. photo by Fabius1975–no its not going to look like this

The US Naval Institute has a one page description of the new Navy frigate in the July 2020 issue of Proceedings, including a nicely annotated side view of the ship (you can see it here). Other than the diagram and the intro, the article is behind the paywall. It not only illustrates how the ship is equipped, it also explains the differences between the US version and the Italian version. I will summarize and include some observations.

The already large FREMM frigate grows to 7,400 tons and 496 feet in length, an increase of “more than 500 tons” (700 tons according to Wikipedia) and 22 feet in length. Draft is reduced from 24 to 23 feet, but only because there is no bow mounted sonar, so the draft over the rest of the hull is likely greater.

This large size appears to open the possibility of a smaller combatant class of 2,000-4,000 tons which might be dual service (Navy/Coast Guard) ships, or perhaps simply an upgraded Bertholf class.

It appears the power plant is much the same as the Italian version, combined diesel electric and gas turbine. In the Italian ships, that consists of four diesel generators totaling roughly 15,000 HP, two electric propulsion motors totaling 5 MW or about 6700 HP, plus an LM2500 gas turbine rated at 32 MW or about 42,895 HP. The combination is reportedly good for more than 30 knots in the Italian frigates and the US version should not be much different despite the increase in displacement. The USNI report claims only a sustained speed in excess of 26 knots. I would note that this is slightly less total horsepower than the National Security cutters.

The one characteristic of the design that gives me pause is the cruise speed. For the Italian frigate the reported max is 17 knots, limited by the power of the electric motors. The USNI article reports a cruising range of 6,000 nmi at a speed of 16 knots in electric mode. These ships are likely to, at some point, perform escort duty for convoys or amphibious ready groups. Many modern merchant ships and all amphibious ready group ships can maintain 20+ knots. It is entirely possible that they may need to escort convoys with a base speed of 18 knots or more, which would require them to operate almost continuously on their one turbine engine which would seriously degrade their range. It is possible they have included higher power electric motors which might allow a 20 knot cruise, but there has been no indication of this. When escorting an aircarrier, they would be expected to operate on turbine virtually al the time, but in that case at least a tanker can be expected to be near by.

The systems reported on the new frigate include:

  • .50 cal. machine guns, looks like ten positions: four bow, two stern, four in the superstructure.
  • 57mm Mk110, ALaMO ammunition is mentioned as a capability.
  • 32 cell Mk41 VLS for SM-2 and quad-packed ESSM (no mention of vertical launch ASROC but that should be a possibility)
  • SPY-6(V)3 EASR multi-function radar, a smaller version of the radar being used on the latest Burke class DDGs
  • Mk20 Electro-optic gun fire control system
  • Cooperative Engagement Capability Datalink
  • UPX-29 IFF
  • SLQ-32(V)6 SEWIP EW system
  • Mk 53 Nulka decoy launchers
  • 16 (four quad) RGM-184 Naval Strike missile launchers
  • 7 meter RHIB hangar
  • 21 tube Mk49 RIM116 RAM launcher (on the hangar aft)
  • Hangar space for up to two MH-60R or one MH-60R and one MQ-8C Fire Scout
  • SQS-62 variable depth sonar
  • TB-37 multi-function towed array sonar
  • SLQ-61 lightweight tow or SLQ-25 Nixie towed torpedo decoy

Construction is expected to begin in 2022, first of class delivery 2026, and Initial Operational Capability (IOC) 2030. Apparently this is a contract with options for out years rather than a “Block Buy.”

Late Addition: Contrary to what I think I remember about the supposed equipment, there was no mention of vertical launch Hellfire. Notably there are none of the weapons normally associated with dealing with swarming high speed inshore attack craft e.g. no 25mm Mk38 and no 30mm Mk46, which seems surprising. Also don’t see a position that seems likely for a laser weapon, unless it is the small area elevated one deck forward of the RAM launcher and aft of the stack.

 

“Australia improving rescue efforts with artificial intelligence” –Indo-Pacific Defense Forum

RAAF C-27J conducts machine learning.

The Indo-Pacific Defense Forum is reporting that Australia is attempting to apply Artificial Intelligence (AI) to the visual search part of the SAR problem.

“Our vision was to give any aircraft and other defense platforms, including unmanned aerial systems, a low-cost, improvised SAR capability,” Wing Commander Michael Gan, who leads AI development for RAAF’s Plan Jericho, said in a news release from Australia’s Department of Defence. Plan Jericho, which was launched in 2015, is an RAAF 10-year blueprint to become one of the world’s most technologically advanced air forces.

It is a collaborative effort of the RAAF Air Mobility Group’s No. 35 Squadron, the Royal Australian Navy’s Warfare Innovation Branch and the University of Tasmania’s Australian Maritime College.

“There is a lot of discussion about AI in [the Department of] Defence, but the sheer processing power of machine learning applied to SAR has the potential to save lives and transform SAR,” Lt. Harry Hubbert of the Navy’s Warfare Innovation Branch, who developed algorithms for AI-Search, said in the news release.

I have to wonder if this is related to VIDAR, which has been included in the Coast Guard Scan Eagle UAVs, and can this be applied to Minotaur?

Swedish Patrol Boat ASW System

Photo: Tapper-class Fast Patrol Boat, displacement of 62 tons, 22 meters (72′) in length (Credits: Swedish Armed Forces)

Naval News reports that the first of six Trapper class fast patrol boats has completed an upgrade that will allow these small vessels to hunt submarines. At 62 tons full load, these vessels are about 2/3s the size of the Coast Guard’s 87 foot Marine Protector class WPBs (91 tons). 

Sweden has a history of suspected or known intrusions by submarines, midget submarines, and/or swimmer delivery vehicles, presumably from the Soviet Union/Russia.

What they seem to have done here is to use technology similar to the Sono-buoys used by airborne ASW units. While surface units do not have the speed of aircraft in getting to the scene, they are potentially more persistent, and because the buoys themselves do not have to fit within ejection tubes, they can be made larger with batteries that provide longer life. 

Photo: Tapper-class enhanced ASW capabilities mainly rely on new sonobuoy integration (Credits: Swedish Armed Forces)

The post makes no mention of weapons or hull mounted sonars. When built in the 1990s, this class, originally of twelve vessels, based on a Swedish Coast Guard vessel design, had a searchlight sonar and small Anti-Submarine mortars that went by the designation RBS-12 or ASW600. The mortar projectiles were relatively small, only 100mm (3.95″) in diameter, weighing 4.2 kilograms (9 pounds 4 oz.), far smaller than the 65 pound (29.5 kilo) Hedgehog or Mousetrap weapons of WWII, but, unlike those systems, they did have a shaped charge. Apparently the weapon was removed at some point, but reportedly the weapon was reintroduced in 2018 on the Koster-class mine countermeasures vessels so it is possible it has been reintroduced here as well. 

Anti-submarine mortar system Elma LLS-920 (SAAB RBS12 ASW600) on the Swedish patrol boat HMS Hugin. Rearview with some mortars unattached. Photo by Dagjoh

While the post seems to emphasize passive detection, the last paragraph suggest there is an active component.

“The Kongsberg Maritime sonar selected for this upgrade is being used for Anti-Submarine Warfare (ASW), Mine and Obstacle detection and Navigation (emphasis applied–Chuck), and is designed for use in shallow water.”

“SEAOWL TECHNOLOGY SOLUTIONS completes sea trials of its IPD aboard La Confiance-class patrol vessel” –Naval News

We talked about this device earlier here and here. I have to believe these devices have more uses than just target designation including navigation and man-overboard recovery. It quickly, quietly, and accurately passes information to the bridge, CIC, or remote weapons operator.

Both the text and video talk about 3D designation. I have to assume that means range and elevation as well as bearing. They also claim to have solved the potential parallax problem (differences in target bearing when taken from different locations on own ship).

This could be particularly useful for the Webber class going to PATFORSWA where they might be confronted with the asymmetric threat of large numbers of fast inshore attack craft.

“Sonardyne’s New Forward Looking Sonar Supports Collision Avoidance” –MarineLink

Sonardyne Vigilent.  Compact in size and with mounting options for both new build and retro-fit. (Photo: Sonardyne)

MarineLink has an interesting press release concerning a forward looking navigational sonar. Since cutters must frequently depart established traffic areas and venture into shallower areas for SAR or law enforcement, this might be useful.

“Vigilant FLS offers mariners subsurface situational awareness, providing live and past vessel track, detailed 3D bathymetry out to 600 meters and automated warnings of unseen collision hazards on and beneath the waterline out to 1.5 kilometers.”

Surface Navy Association 2019 –Virtual Attendance

Like many of you, I was unable to attend the Surface Navy Association Conference, but I did find a number of videos which may provide some of the information that would have been available there. The Coast Guard Commandant had been scheduled to speak but cancelled, apparently in response to the partial government shutdown.

I have provided three videos, each about ten minutes, that may be of general interest, and links to four others, typically 20-25 minutes. The descriptions are from their respective YouTube pages.

The second and third videos have specific Coast Guard content, which I have identified by bold typeface with the beginning time in parenthesis. Some of the other equipment may have Coast Guard applications in the future.

Day 1 video coverage at SNA 2019, the Surface Navy Association’s national symposium. In this video we cover:
– Austal latest frigate design for FFG(X)
– Raytheon DART Variable Depth Sonar (VDS)
– Raytheon / Kongsberg Naval Strike Missile (NSM)
– Lockheed Martin Long Range Anti Ship Missile (LRASM)

Day 2 video coverage at SNA 2019, the Surface Navy Association’s national symposium.
In this video we cover:
– Fincantieri Marine Group FREMM frigate design for FFG(X)
– General Dynamics NASSCO John Lewis-class T-AO (New Oiler)
– Raytheon SM-2 restart
– Raytheon SM-3
– Leonardo DRS Hybrid Electric Drive for U.S. Coast Guard’s Offshore Patrol Cutter (OPC) (time 11:10)

Day 3 video coverage at SNA 2019, the Surface Navy Association’s national symposium. In this video we cover:
– Atlas North America’s solutions for mine counter measures, harbor security and unmanned surface vessels
– Lockheed Martin Canadian Surface Combatant (Type 26 Frigate, Canada’s Combat Ship Team)
Insitu ScanEagle and Integrator UAS (time 4:30)
– Raytheon SPY-6 and EASR radar programs

NAVSEA’s Moore on Improving Ship Repair, McCain & Fitzgerald, Ford, LCS

Vice Adm. Tom Moore, USN, the commander of the Naval Sea Systems Command, discusses US Navy efforts to increase public and private ship repair capabilities, lessons learned from repairing USS John S. McCain and Fitzgerald, the new Ford-class aircraft carrier, getting the Littoral Combat Ship on regular deployments and more with Defense & Aerospace Report Editor Vago Muradian at the Surface Navy Association annual conference and tradeshow in Northern Virginia.

GE Marine’s Awiszus on LM2500 Engine Outlook, Future Shipboard Power

George Awiszus, military marketing director of GE Marine, discusses the outlook for the company’s LM2500 engine that drives warships in more than 30 nations and the future of shipboard power with Defense & Aerospace Report Editor Vago Muradian at the Surface Navy Association’s annual conference and tradeshow in Northern Virginia.

US Navy’s Moran on Improving the Surface Force, Culture, Ship Repair & Information Sharing

Adm. Bill Moran, USN, the vice chief of naval operations, discusses dialogue with China, improving the surface force in the wake of 2017’s deadly accidents, refining Navy culture, increasing ship repair capabilities, harnessing data, improving information sharing across the force and the new Design for Seapower 2.0 with Defense & Aerospace Report Editor Vago Muradian at the Surface Navy Association’s annual conference and tradeshow in Northern Virginia.

US Navy’s Coffman on New Expeditionary Warfighting Concepts, Organizations, Unmanned Ships

Maj. Gen. David “Stretch” Coffman, USMC, the US Navy’s director of expeditionary warfare (N95), discusses new expeditionary warfighting concepts, the recent deployment of Littoral Combat Group 1 — composed of USS Wayne E Meyer (DDG-108) and USS Somerset (LPD-25) — to South America, new formations to replace the current Amphibious Ready Group and Marine Expeditionary Unit, unmanned ships, the performance of the F-35B Lightning II and more with Defense & Aerospace Report Editor Vago Muradian.

SNA Symposium, Virtual Tour

airbus ds trs 4D SNA 217

If you were unable to attend the Surface Navy Association Symposium, but would like to see what you missed, NavyRecognition offers a series of videos. They include a number of systems that have been discussed here including, smart projectiles for the 57mm, unmanned surface vehicles, the LRASM Long Range Anti-Ship Missile, SeaRAM as a replacement for Phalanx, TRAPS Towed Reelable Active Passive Sonar, MK20 Mod 1 Electro-Optical Sensor System (EOSS), TRS-3D Baseline D multi-mode radar (MMR) ordered for the ninth NSC.

If you want to look primarily at the frigate proposals as well as the proposed weapons modules for the LCS which might also be applicable to the icebreaker, there is this composite video. 

Incidentally why was there no mention of this symposium on the National Cuttermen Association Chapter, Surface Navy Association website?